935 research outputs found

    Preprocessing Techniques to Support Event Detection Data Fusion on Social Media Data

    Get PDF
    This thesis focuses on collection and preprocessing of streaming social media feeds for metadata as well as the visual and textual information. Today, news media has been the main source of immediate news events, large and small. However, the information conveyed on these news sources is delayed due to the lack of proximity and general knowledge of the event. Such news have started relying on social media sources for initial knowledge of these events. Previous works focused on captured textual data from social media as a data source to detect events. This preprocessing framework postures to facilitate the data fusion of images and text for event detection. Results from the preprocessing techniques explained in this work show the textual and visual data collected are able to be proceeded into a workable format for further processing. Moreover, the textual and visual data collected are transformed into bag-of-words vectors for future data fusion and event detection

    Chiral Vortons and Cosmological Constraints on Particle Physics

    Full text link
    We investigate the cosmological consequences of particle physics theories that admit stable loops of current-carrying string - vortons. In particular, we consider chiral theories where a single fermion zero mode is excited in the string core, such as those arising in supersymmetric theories with a D-term. The resulting vortons formed in such theories are expected to be more stable than their non-chiral cousins. General symmetry breaking schemes are considered in which strings formed at one symmetry breaking scale become current-carrying at a subsequent phase transition. The vorton abundance is estimated and constraints placed on the underlying particle physics theories from cosmological observations. Our constraints on the chiral theory are considerably more stringent than the previous estimates for more general theories.Comment: minor corrections made. This version will appear in PR

    Staurosporine Inhibits Frequency-Dependent Myofilament Desensitization in Intact Rabbit Cardiac Trabeculae

    Get PDF
    Myofilament calcium sensitivity decreases with frequency in intact healthy rabbit trabeculae and associates with Troponin I and Myosin light chain-2 phosphorylation. We here tested whether serine-threonine kinase activity is primarily responsible for this frequency-dependent modulations of myofilament calcium sensitivity. Right ventricular trabeculae were isolated from New Zealand White rabbit hearts and iontophoretically loaded with bis-fura-2. Twitch force-calcium relationships and steady state force-calcium relationships were measured at frequencies of 1 and 4 Hz at 37 °C. Staurosporine (100 nM), a nonspecific serine-threonine kinase inhibitor, or vehicle (DMSO) was included in the superfusion solution before and during the contractures. Staurosporine had no frequency-dependent effect on force development, kinetics, calcium transient amplitude, or rate of calcium transient decline. The shift in the pCa50 of the force-calcium relationship was significant from 6.05 ± 0.04 at 1 Hz versus 5.88 ± 0.06 at 4 Hz under control conditions (vehicle, P < 0.001) but not in presence of staurosporine (5.89 ± 0.08 at 1 Hz versus 5.94 ± 0.07 at 4 Hz, P = NS). Phosphoprotein analysis (Pro-Q Diamond stain) confirmed that staurosporine significantly blunted the frequency-dependent phosphorylation at Troponin I and Myosin light chain-2. We conclude that frequency-dependent modulation of calcium sensitivity is mediated through a kinase-specific effect involving phosphorylation of myofilament proteins

    Recent developments in Vorton Theory

    Get PDF
    This article provides a concise overview of recent theoretical results concerning the theory of vortons, which are defined to be (centrifugally supported) equilibrium configurations of (current carrying) cosmic string loops. Following a presentation of the results of work on the dynamical evolution of small circular string loops, whose minimum energy states are the simplest examples of vortons, recent order of magnitude estimates of the cosmological density of vortons produced in various kinds of theoretical scenario are briefly summarised.Comment: 6 pages Latex. Contribution to 1996 Cosmology Meeting, Peyresq, Franc

    Cosmic Vortons and Particle Physics Constraints

    Get PDF
    We investigate the cosmological consequences of particle physics theories that admit stable loops of superconducting cosmic string - {\it vortons}. General symmetry breaking schemes are considered, in which strings are formed at one energy scale and subsequently become superconducting in a secondary phase transition at what may be a considerably lower energy scale. We estimate the abundances of the ensuing vortons, and thereby derive constraints on the relevant particle physics models from cosmological observations. These constraints significantly restrict the category of admissible Grand Unified theories, but are quite compatible with recently proposed effects whereby superconducting strings may have been formed close to the electroweak phase transition.Comment: 33 pages, 2 figures, RevTe

    Tectonic Transport Directions, Shear Senses and Deformation Temperatures Indicated by Quartz c‐Axis Fabrics and Microstructures in a NW‐SE Transect across the Moine and Sgurr Beag Thrust Sheets, Caledonian Orogen of Northern Scotland

    Get PDF
    Moine metasedimentary rocks of northern Scotland are characterized by arcuate map patterns of mineral lineations that swing progressively clockwise from orogen‐perpendicular E‐trend-ing lineations in greenschist facies mylonites above the Moine thrust on the foreland edge of the Caledonian Orogen, to S‐trending lineations at higher structural levels and metamorphic grades in the hinterland. Quartz c‐axis fabrics measured on a west to east coast transect demonstrate that the lineations developed parallel to the maximum principal extension direction and therefore track the local tectonic transport direction. Microstructures and c‐axis fabrics document a progressive change from top to the N shearing in the hinterland to top to the W shearing on the foreland edge. Field relationships indicate that the domain of top to the N shearing was at least 55 km wide before later horizontal shortening on km‐scale W‐vergent folds that detach on the underlying Moine thrust. Previously published data from the Moine thrust mylonites demonstrate that top to the W shearing had largely ceased by 430 Ma, while preliminary isotopic age data suggest top to the N shearing occurred at ~470–450 Ma. In addition, data from the east coast end of our transect indicate normal-sense top down‐SE shearing at close to peak temperatures at ~420 Ma that may be related to the closing stages of Scandian deformation, metamorphism and cooling/exhumation

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Einstein equations for an asymmetric brane-world

    Get PDF
    We consider a brane-world of co-dimension one without the reflection symmetry that is commonly imposed between the two sides of the brane. Using the coordinate-free formalism of the Gauss-Codacci equations, we derive the effective Einstein equations by relating the local curvature to the matter on the brane in the case when its bare tension is much larger than the localized matter, and hence show that Einstein gravity is a natural consequence of such models in the weak field limit. We find agreement with the recently derived cosmological case, which can be solved exactly, and point out that such models can be realized naturally in the case where there is a minimally coupled form field in the bulk.Comment: 14 pages, Revte
    corecore